Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(12): 14410-14421, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35312277

RESUMO

Organic optoelectronic devices that can be fabricated at low cost have attracted considerable attention because they can absorb light over a wide frequency range and have high conversion efficiency, as well as being lightweight and flexible. Moreover, their performance can be significantly affected by the choice of the charge-selective interlayer material. Nonstoichiometric nickel oxide (NiOx) is an excellent material for the hole-transporting layer (HTL) of organic optoelectronic devices because of the good alignment of its valence band position with the highest occupied molecular orbital level of many p-type polymers. Herein, we report a simple low-temperature process for the synthesis of NiOx nanoparticles (NPs) that can be well dispersed in solution for long-term storage and easily used to form thin NiOx NP layers. NiOx NP-based organic photodiode (OPD) devices demonstrated high specific detectivity (D*) values of 1012-1013 jones under various light intensities and negative biases. The D* value of the NiOx NP-based OPD device was 4 times higher than that of a conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based device, an enhancement that originated mainly from the 16 times decreased leakage current. The NiOx NP-based OPD device demonstrated better reliability over a wide range of light intensities and operational biases in comparison to a device with a conventional sol-gel-processed NiOx film. More importantly, the NiOx NP-based OPD showed long-term device stability superior to those of the PEDOT:PSS and sol-gel-processed NiOx-based devices. We highlight that our low-temperature solution-processable NiOx NP-based HTL could become a crucial component in the fabrication of stable high-performance OPDs.

2.
ACS Appl Mater Interfaces ; 12(12): 14244-14253, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32075367

RESUMO

We report the synthesis of composite interlayers using alcohol-soluble polyfluorene (ASP)-wrapped single-walled carbon nanotubes (SWNTs) and their application as electron-transport layers for efficient organic solar cells. The ASP enables the individual dispersion of SWNTs in solution. The ASP-wrapped SWNT solutions are stable for 54 days without any aggregation or precipitation, indicating their very high dispersion stability. Using the ASP-wrapped SWNTs as a cathode interlayer on zinc oxide nanoparticles (ZnO NPs), a power conversion efficiency of 9.45% is obtained in PTB7-th:PC71BM-based organic solar cells, which is mainly attributed to the improvement in the short circuit current. Performance enhancements of 18 and 17% are achieved compared to those of pure ZnO NPs and ASP on ZnO NPs, respectively. In addition, the composite interlayer is applied to non-fullerene-based photovoltaics with PM6:Y6, resulting in a power conversion efficiency of up to 14.37%. The type of SWNT (e.g., in terms of diameter range and length) is not critical to the improvement in the charge-transport properties. A low density of SWNTs in the film (∼1 SWNTs/µm2 for ASP-wrapped SWNTs) has a significant influence on the charge transport in solar cells. The improvement in the performance of the solar cell is attributed to the increased internal quantum efficiency, balanced mobility between electrons and holes, and minimized charge recombination.

3.
Front Chem ; 6: 473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356720

RESUMO

The development of n-type porphyrin acceptors is challenging in organic solar cells. In this work, we synthesized a novel n-type porphyrin acceptor, PZn-TNI, via the introduction of the electron withdrawing naphthalene imide (NI) moiety at the meso position of zinc porphyrin (PZn). PZn-TNI has excellent thermal stability and unique bimodal absorption with a strong Soret band (300-600 nm) and weak Q-band (600-800 nm). The weak long-wavelength absorption of PZn-TNI was completely covered by combining the low bandgap polymer donor, PTB7-Th, which realized the well-balanced panchromatic photon-to-current conversion in the range of 300-800 nm. Notably, the one-step reaction of the NI moiety from a commercially available source leads to the cheap and simple n-type porphyrin synthesis. The substitution of four NIs in PZn ring induced sufficient n-type characteristics with proper HOMO and LUMO energy levels for efficient charge transport with PTB7-Th. Fullerene-free organic solar cells based-on PTB7-Th:PZn-TNI were investigated and showed a promising PCE of 5.07% without any additive treatment. To the best of our knowledge, this is the highest PCE in the porphyrin-based acceptors without utilization of the perylene diimide accepting unit.

4.
ACS Appl Mater Interfaces ; 10(41): 35404-35410, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30234957

RESUMO

Porphyrin derivatives have recently emerged as hole transport layers (HTLs) because of their electron-rich characteristics. Although several successes with porphyrin-based HTLs have been recently reported, achieving excellent solar cell performance, the chances to improve this further by molecular engineering are still open. In this work, Zn porphyrin (PZn)-based HTLs were developed by conjugating fluorinated triphenylamine (FTPA) wings at the perimeter of the PZn core for low-temperature perovskite solar cells (L-PSCs). The fluorinated PZn-HTLs (PZn-2FTPA and PZn-3FTPA) exhibited superior HTL properties compared to the nonfluorinated one (PZn-TPA). Moreover, their deeper highest occupied molecular orbital energy levels were beneficial for boosting open-circuit voltages, and their enhanced face-on stacking improved the hole transport properties. The L-PSC using PZn-2FTPA achieved the highest performance of 18.85%. Thus far, this result is one of the highest reported power conversion efficiencies among the PSCs using porphyrin-based HTLs.

5.
J Nanosci Nanotechnol ; 18(10): 7037-7042, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954529

RESUMO

The julolidine based interfacial modifier (IM-J) for cathode buffer layer following the "donor-acceptor" design concept with julolidine substituent as an electron donating moiety was incoporated to improve the surface properties of ZnO. Simple treatment of metal oxide type cathode buffer materials with organic interfacial modifier induces the enhanced photovoltaic performance and could effectively overcome several interfacial problems in inverted organic photovoltaic cells (I-OPVs). We studied on the coverage of IM-J on ZnO surface with variation of solution concentrations to reduce charge recombination and macroscopic phase separation. At the optimum condition, ZnO/IM-J (0.05 w/v%), IM-J significantly decreased the surface tension (46.1 mN/m) and improved surface morphology (RMS roughness: 0.61 nm). As a result, compared to the unmodified ZnO based device, the ZnO/IM-J based I-OPVs showed significantly improved power conversion efficiency (PCE) from 7.41 to 8.07% due to the increased photocurrent density (Jsc) and fill factor (FF). It is concluded that IM-J is one of the promising candidates for controlling electronic property of ZnO buffer layer in inverted organic photovoltaic cells. Also, our interfacial modified system can be utilized in other optoelectronic devices.

6.
ACS Omega ; 3(12): 18398-18410, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458412

RESUMO

We report for the first time that alkali carbonates (Li2CO3, K2CO3, and Rb2CO3) based on a low-temperature solution process can be used as interfacial modifiers for SnO2 as robust electron-transport layers (ETL) for inverted organic solar cells (iOSCs). The room-temperature photoluminescence, the electron-only devices, and the impedance studies altogether suggested the interfacial properties of the alkali carbonates-modified SnO2 ETLs, which were much better than those based on the SnO2 only, provided efficient charge transport, and reduced the charge recombination rates for iOSCs. The iOSCs using the polymer donor poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] and the fullerene acceptor phenyl-C70-butyric acid methyl ester as the active layer showed the average power-conversion efficiencies (PCEs) based on ten devices of 6.70, 6.85, and 7.35% with Li2CO3-, K2CO3-, and Rb2CO3-modified SnO2 as ETLs, respectively; these are more than 22, 24, and 33% higher than those based on the SnO2 only (5.49%). Moreover, these iOSC devices exhibited long-term stabilities, with over 90% PCEs remaining after the devices were stored in ambient air for 6 weeks without encapsulations. We believe that alkali carbonates-modified SnO2 approaches are an effective way to achieve stable and highly efficient iOSCs and might also be suitable for other optoelectronic devices where an ETL is needed, such as perovskite solar cells or organic light-emitting diodes.

7.
ChemSusChem ; 10(19): 3780-3787, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28875552

RESUMO

The susceptibility of porphyrin derivatives to light-harvesting and charge-transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole-transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low-temperature processed PSCs. Key to the design strategy is the incorporation of an electron-deficient pyridine moiety to down-shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl-2-pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA-containing zinc porphyrin-based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro-OMeTAD, a current state-of-the-art HTM. In particular, PZn-DPPA-based PSCs show superior air stability, in both doped and undoped forms, to spiro-OMeTAD based devices.


Assuntos
Compostos de Bifenilo/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Porfirinas/química , Energia Solar , Titânio/química , Eletroquímica
8.
ACS Appl Mater Interfaces ; 9(4): 3831-3841, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28029030

RESUMO

1-D ZnO represents a fascinating class of nanostructures that are significant to optoelectronics. In this work, we investigated the use of an eco-friendly, metal free in situ doping through a pure thiophene-sulfur (S) on low temperature processed (<95 °C) and annealed (<170 °C), planar 1-D ZnO nanorods (ZnRs) spin-coated as a hole-blocking and electron transporting layer (ETL) for inverted organic solar cells (iOSCs). The TEM, HRTEM, XPS, FT-IR, EDS and Raman studies clearly reveal that the thiophene-S (Thi-S) atom is incorporated on planar ZnRs. The investigations in electrical properties suggest the enhancement in conductivity after Thi-S doping on 1-D ZnRs. The iOSCs of poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT: PC60BM) photoactive layer containing thiophene-S doped planar ZnRs (Thi-S-PZnRs) as ETL exhibits power conversion efficiency (PCE) of 3.68% under simulated AM 1.5 G, 100 mW cm-2 illumination. The ∼47% enhancement in PCE compared with pristine planar ZnRs (PCE = 2.38%) ETL is attributed to a combination of desirable energy level alignment, morphological modification, increased conductivity and doping effect. The universality of Thi-S-PZnRs ETL is demonstrated by the highest PCE of 8.15% in contrast to 6.50% exhibited by the iOSCs of ZnRs ETL for the photoactive layer comprising of poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b;4,5-b]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: phenyl-C71-butyric acid methyl ester (PTB7-Th: PCB71M). This enhancement in PCE is observed to be driven mainly through improved photovoltaic parameters like fill factor (ff) as well as photocurrent density (Jsc), which are assigned to increased conductivity, exciton dissociation, and effective charge extraction, while; better ohmic contact, reduced charge recombination, and low leakage current density resulted in increased Voc.

9.
Nanoscale ; 8(9): 5024-36, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26864170

RESUMO

In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.

10.
ACS Appl Mater Interfaces ; 6(2): 803-10, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24351036

RESUMO

Hybrid solar cells (HSCs) incorporating both organic and inorganic materials typically have significant interfacial issues which can significantly limit the device efficiency by allowing charge recombination, macroscopic phase separation, and nonideal contact. All these issues can be mitigated by applying carefully designed interfacial modifiers (IMs). In an attempt to further understand the function of these IMs, we investigated two IMs in two different HSCs structures: an inverted bilayer HSC of ZnO:poly(3-hexylthiophene) (P3HT) and an inverted bulk heterojunction (BHJ) solar cell of ZnO/P3HT:[6,6]-phenyl C61-butyric acid methyl ester (PCBM). In the former device configuration, ZnO serves as the n-type semiconductor, while in the latter device configuration, it functions as an electron transport layer (ETL)/hole blocking layer (HBL). In the ZnO:P3HT bilayer device, after the interfacial modification, a power conversion efficiency (PCE) of 0.42% with improved Voc and FF and a significantly increased Jsc was obtained. In the ZnO/P3HT:PCBM based BHJ device, including IMs also improved the PCE to 4.69% with an increase in Voc and FF. Our work clearly demonstrates that IMs help to reduce both the charge recombination and leakage current by minimizing the number of defect sites and traps and to increase the compatibility of hydrophilic ZnO with the organic layers. Furthermore, the major role of IMs depends on the function of ZnO in different device configurations, either as n-type semiconductor in bilayer devices or as ETL/HBL in BHJ devices. We conclude by offering insights for designing ideal IMs in future efforts, in order to achieve high-efficiency in both ZnO:polymer bilayer structure and ZnO/polymer:PCBM BHJ devices.

11.
ACS Appl Mater Interfaces ; 4(12): 6669-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23148515

RESUMO

A new donor-acceptor-conjugated organic small molecule, BDT(TBT)(2), comprised of benzo[1,2-b:4,5-b']dithiophene and 2,1,3-benzothiadiazole units was designed and synthesized. The small molecule BDT(TBT)(2) in its thin film showed an absorption band in the range of 300-700 nm with an absorption edge at 650 nm and an optical band gap of 1.90 eV. As estimated from the cyclic voltammetry measurements, the HOMO and LUMO energy levels of BDT(TBT)(2) were -5.44 and -3.37 eV, respectively. The spin-coated thin film of BDT(TBT)(2) exhibited p-channel output characteristics with a hole mobility of 2.7 × 10(-6). BDT(TBT)(2), when explored as an electron-donor material in solution-processed bulk-heterojunction organic solar cells in conjunction with a PC(71)BM acceptor with an active layer thickness of 50-55 nm, generated a power conversion efficiency (PCE) of 1.18%. A more impressive PCE of ~2.9% with a short-circuit current density (J(sc)) of 7.94 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.89 V was achieved when the active layer of the cell was annealed at higher temperature (~180 °C).

12.
Chem Commun (Camb) ; 48(4): 573-5, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22064821

RESUMO

Two new small molecules with a rigid planar naphtho[1,2-b:5,6-b']dithiophene (NDT) unit were designed and synthesized. Solution processed bulk-hetereojunction organic solar cells based on blends of the small molecules and [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) exhibited promising photovoltaic device performance with a maximum power conversion efficiency up to 2.20% under the illumination of AM 1.5G, 100 mW cm(-2).

13.
J Nanosci Nanotechnol ; 8(10): 5113-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19198402

RESUMO

Zinc oxide (ZnO) was used as a buffer layer in the fabrication of polymer solar cells with the configuration of ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Ag, in which the Ag cathode was prepared by inkjet printing using silver ink. Due to the hydrophobic nature of the P3HT:PCBM active layer surface, the hydrophilic silver ink cannot be coated directly on the top of the P3HT:PCBM layer. To overcome this problem, ZnO particles, prepared in a simple solution method by using polyethylene glycol (PEG) surfactant molecules, were used as a buffer layer between the P3HT:PCBM layer and Ag cathode. The present study discusses and compares the performance of the solar cells with and without the ZnO buffer layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...